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Let [a, b] c R and let {L,J'cN be a sequence of positive linear operators from
en [a, b] (n E ;Z +) to C[a, h]. The convergence of L, to the identity operator I is
closely related to the weak convergence of a sequence of finite measure Jl) to the
unit (Dirac) measure '),0' XoE [a, b]. New estimates are given for the remainder
IS [a.h] IdJl,- I(.~o)l, where IE C"( [a, b]). Using moment methods, Shisha-Mond­
type best or nearly best upper bounds are established for various choices of [a, b],
n and given moments of JlJ' Some of them lead to attainable inequalities. The
optimal functions/measures are typically spline functions and finitely supported
measures. The corresponding inequalities involve the first modulus of continuity of
('"' (the nth derivative of I) or a modification of it. Several applications of these
results are given. (1985 Academic Press. Inc

PART I. INTRODUCTION

We start with the following definition:

DEFINITION 1.1. Let Q be a connected compact Hausdorff space and
c(Q, IR) the collection of all continuous f Q ~ [Ri. Let gE c(Q, IR) be fixed
and define the g-pseudomodulus of continuity of IE C( Q, IR) as

It'xU; h)=sup{II(x)- I(y)l: Ig(x)~ g(yll :(h),
Y, l'

(1.1.1)

where h ~ O.
Thus It'x( g, h) :( h. The quantity It'x( j; h) enjoys most of the basic proper­

ties of the usual modulus of continuity w 1U; h) (positively homogeneous as
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a function of J: non-decreasing, non-negative, and subadditive in h).
However, It) j; . ) is an upper-semicontinuous function and in general not
a continuous one.

EXAMPLE. Let

and I(x) = x then

g(x)=O,

= x -- I,

= I,

Wg(J: h) = I + h,

=3,

I :(x:(2;

O:(h<1;

h;? I.

Obviously, IVKU; .) is discontinuous.
Consider a sequence of positive linear operators L/I: C(Q, !R) ---+ c(Q, !R),

such that the sequence of functions (L,,( I) LE r~ is uniformly bounded. In
particular, II I :( g implies IL"U)I :( L/lUn. The following result is an easy
generalization of a result due to Shisha and Mond [26], who took
Q = [a, bJ c !R and g( x) = x.

THEOREM 1.2. One has

IIL,,(f) ~I :( II I II IIL,,( 1) - I + \\'cU (J,,)( 1+ IIL,,( 1)11), (1.2.1)

where

{J" = ( II L/I( (g -- g( y))2)( y) II )1/2.

Further, 11'11 stands lor the supremum norm. If L,,( I ) = I, then (1.2.1) sim­
plifies to

II L/lU) - I II :( 2wg U (J,,).

As an application, one has the .f()llmring \rell-knmrn theorem due to Korovkin
[ 18].

COROLLARY 1.3. Let Q = [a, b] c !R and let (L/I: C( [a, b]) ---+

C( [a, b]) }" c be a sequence of positive linear operators. Suppose that
gEC([a,b]) is 1:1 and jilrther that L,,(I)->"I, L,,(g)->"g, and
L/I(g2) ---+" g2 Then L/I(I) ---+" j; jiir all IE C( [a, b]).
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Now apply Theorem 1.2. I

Z. Ditzian [8] gave extensions of (1.2.1) to the non-compact case under
suitable growth conditions for f

Also R. A. DeVore [7] gave analogues of (1.2.1) for fEC1([a,b]).
Furthermore, E. Censor [6] extended (1.2.1) to the multidimensional case
and established related results for f E C2

( [a, b]). Next B. Mond [22] gave
a more flexible inequality which sometimes leads to better constants in the
upper bounds for II L,Jll - f II. This result was carried over to
IECI([a,b]), by B. Mond and R. Vasudevan [23].

The latest result in this direction which often gives better constants as
well as a higher degree of approximation for fECi ([a, b]) is due to H. H.
Gonska [12]. He used the first Stekloff function of f '.

J. P. King [17] gave a probabilistic interpretation of Korovkin's main
theorem and certain pointwise inequalities analogous to (1.2.1) for
IE C([a, b]) or IE CI([a, b]).

We have mentioned only the papers directly related to our research.
However, there is a large related literature, for instance, the significant
theoretical work in Korovkin theory by J. A. Saskin [24], G. G. Lorentz
[21], D. AmiI' and Z. Ziegler [I], H. Bauer [4], and most recently K.
Donner [9].

Our method is to reduce questions about positive linear operators to
questions about finite (positive) measures. Namely, let L: C[a, b] --->

C[a, b] be a positive linear operator. Then for any x E [a, b] there is a
finite measure J.1, such that

LUx)= jf(t))1x(dt), for all IE C[a, b].

And many questions can be reduced to moment problems involving the
measure )1,. Using standard moment methods, see [15,16], we derive
pointwise estimates for IL(f x) - f(x)1 which sometimes imply uniform
ones. The advantage of this approach is that frequently one even obtains
attainable (i.e., sharp) or nearly attainable inequalities. The optimal
elements j; )1x are often spline functions and finitely supported measures,
respectively. Thus, this paper mainly deals with the quantitative study of
the pointwise convergence of a sequence of positive linear operators to the
identity operator through the use of moment methods.
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PART 2. ONE-DIMENSIONAL QUANTITATIVE RESULTS FOR
FINITE APPROXIMATION MEASURES OF THE UNIT MEASURE

In the rest of this paper we study the degree of weak convergence of a
sequence of finite measures {PILe on IR to the unit measure (j"" In fact
we estimate ISQfdp -f(xo)l; fE C(Q), n E 11 I, XoE Q. Here Q is usually a
compact interval of IR, sometimes IR itself. This enables us in turn to
estimate IL(/; x) -f(x)l, where L is a positive linear operator
C(Q)H C(Q).

Using standard moment methods, we obtain best or nearly best upper
bounds, often attainable, for different Q, n and given power moments of p.

Our inequalities involve the first modulus of continuity w,(/(n" h), or a
modified version of it, of the nth derivative f (III for a fixed value of the
argument h.

We present several favorable comparisons of our results to related
known results, for instance, the inequality due to O. Shisha and B. Mond
[26J, as well as to the latest improvement due to H. H. Gonska [12].

I. PRELIMINARIES

The following general result leads to Corollary 2.2 which is used a lot
throughout this paper.

THEOREM 2.1. Let C be a subset 01 the real no(med vector space
V = ( V, 11'11) which is star-shaped relative to the .fixed point xo. Let filrther
{(hi' w;): iEI} be a given collection 01 numbers (h;>O, w;>O, I arbitrary),
and consider the collection .'!J' of functions f C -4 IR such that f( xo) = °
while, for each i E I,

Then

Ils- til ~h,=:> If(s)-f(t)! ~ 11";. (2.1.1 )

where

sup If(s)1 = p( lis - xoll)
{f'.F

(SE C), (2.1.2 )

Prool Obviously, p( II ull) is an even subadditive function on IR satisfy­
ing p(O)=O and p(h;)~w; (iEl). Moreover, p(llull) is non-decreasing on
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IR +. Hence j~)(s) = p( lis - xoll) restricted to C defines a function j~) E .'F,
showing that (2.1.2) holds with the ;? sign. To prove the opposite
inequality, it suffices to show that If(s)1 ~IiclkiWi as soon as fEY; and
lis - XoIi ~ IiE 1 kih i (k iE?+, k = Lief k i < 00). This is easily done by an
induction on k. The cases k = 0 and k = I are obvious. Let k ;? 0 satisfy the
assertions and suppose SEC satisfies

iE'

Choosing s' on the line segment XoS such that lis' - soil ~ I'; kih i and
Ils-s'll ~h" one easily sees that If(s)1 ~I'{ kiw i+ W" I

COROLLARY 2.2. Let C and Xo he as ahove and consider f: C -> IR with

the properties

and

f(x o) =0

Ils- til ~h= If(s)-f(l)1 ~ w; w, h>O.

(2.2.1 )

Then there is a maximal such function 1, namely,

1(1) = ill t - xoll /hl w,

where i'l indicates the ceiling ol the numher.

(2.2.2)

2.3. An Auxiliary Function

Let h > 0 be fixed. We shall often use the even function defined by

Equivalently,

" = 'Ixl I~l (Ixl-t)" ,
1,J) t I h (n _ I)! dt (XEIR). (2.3.1 )

-1'1 "" ( "" , I" 1 )1,,(x)= I I ... J =---J" dx" ···(Lr:,.
'0'0 0 1

Since [t/h] = L/~ 0 1i <It < " the latter yields that

I ( x )1,,(x)= n! I~O (Ixl-jh)': .

(2.3.2)

(2.3.3 )
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In particular, letting k = II x I/hl,
-I k 1

<pdx)= I (Ixl-jh) f = I (
/ 0 i ()

1
- jh) = k IXI .. - k(k _. I) h. (2.3.4)

2

Maximizing over k ?" 0, (attained if k = ~ + Ixl. h), it follows that

(2.3.5 )

In fact, <Pl(Xk)=<p*dxd=~'hk2 and fl'(d=<P~I(xd=kat xk=(k-~)h
(k = I, 2. 3, ... ). Further, one easily gets

(
Ixl" II Ixl" h Ixl" I')

<PII(X) ~ <P*"(X) = (n + 1)1 h + 2n! + 8(n - 1 j!
(2.3.6)

with equality only at x = 0. Note from (2.3.3) that <PII is a (polynomial)
spline function. In each interval (( j - 1) h, jhJ equals a polynomial of
degree n. At the points jh (j=O, I, ... ) the derivatives DkcplI (k=O, L.. ..
n - I) are continuous while the nth derivative makes an upward jump of
size I. Moreover, <PII(X) is convex on IR and strictly increasing on IR f

(n?" 1). Finally.

<PII(X) = i' <PII I(t)dt
-II

provided we define <Po( t) = It/hl·

(2.3.7)

II. BEST UPPER BOUNDS AND RELATED RESLJLTS

Using moment theory methods we obtain the following results.

THEOREM 2.4. Let Ii he a .finite measure of mass m on the interval [a, hJ
where OE [a, h]. Let c=max(lal. h). Suppose Iurther that

(2.4.1)

where r> °and d> °are given. In order that 11 exists, H'e also assume thai
d' ~ mc'. NexI, consider f [a. hJ -> IR satisf)'ing

II( .I' ) - I(t )I ~ H' when .1', I E [a, hJ; Is - t I~ h. (2.4.2 )
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Here, h > 0 and It' > 0 are fixed. Then the hest possihle constant
K = K(m, 1', d, h, It', f(O)) in the inequality

IJfdP~f(O)1 ~ Im---lllf(O)1 +mK (2.4.3)

is Riven as folio It'S (and is independent of flO)). Here n=lclhl,
I. = 1dlhm 1 'l· Since d' ~ mc' one has 1~ I. ~ n.

(i) K = I1IV It'hen I. = n, that is, It'hen dim h > c ~ h.

(ii) K=[I+(llm)(dlh)'(n-l)l 'Jlt'lt'henr~1 andk<n.

(iii) K = (k + ed It' ~ [I + dl(hm 1 ')J It' It'hen r?- 1 and k < n. Here

ek = [d'lm- (k - 1)' h'JI [k'h' - (I. - 1r h'].

The equality sign in (2.4.3) is usually not attained hut can he approached
arhitrarily closely hy thefunction f( t) = f(O) + 1:1 tlh lit' (Ivith I: = ± 1 of the
same siRn as (m - 1) f(O)) and a measure Il of mass m supported hy a single
point in case (i), hy at most tlt'O points 0 and t* in case (ii) (It'ith ahsolute
wlue sliRhtly to the right of (n - 1) h), and hy at most two points t 1 and t 2 in
case (iii) (It'ith ahsolute value slightl.v to the riRht of(k - 1) hand kh, respec­
tivelr).

Proof Let g( t) = f(t) - f( 0). From Corollary 2.2, we have

Thus

IJfdP-f(O)I=!J RdP+(m-l)f(O)I~J¢dp+lm-lllf(Ol'I·

Here, the equality sign obtains when f is of the form f~)(t) = f(O)+ I:¢(t)
with E = ±1 of the same sign as (m - 1) f(O). One easily verifies that fn also
satisfies (2.4.2). Thus, the best constant K in (2.4.3) is given by

mK = sup r¢ dp
I' •

where p ranges over the measures on [a, hJ of mass m which satisfy (2.4.1).
Introducing the probability measure dl' = m- ) dp, we have

K=sup r ¢(t)I'(dt)
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where I' ranges through the probability measures on [a. hJ satisfying

J I II' 1'( cit) = d'/IIl.

Note that both rjJ(t) and Iii' are even functions on [a. h]. It follows (see
[15. 16J) that K=tj;(dr/m). where 1'1 = ~(u. tj;(u)): O:o:;u:O:;c') describes the
upper boundary of the convex hull conv J'() of the curve

1'0 = { (fr. rjJ(t)): 0 :0:; I :0:; c: (where c=max(lal,h).

Note that 1'0 consists of the following parts:

(i) The origin (0,0) corresponding to 1=0.

(ii) For k = 1, .... n - I, the half open horizontal line segments
(Pb QkJ where Pk = ((k - I)' hr. kl1') and Qk = (k'h', kit).

(iii) The half open non-empty horizontal line segment (P". Q*J.
where Q* = (c', nw). It is always a part of the upper boundary 1'1 of
conv 1'0' yielding assertion (i) of the theorem.

The line segment from Pk to Pk + 1 has a slope \lh ' [k' - (k - In
which is decreasing in k when r? I and increasing in k when 0 < r:O:; I
(since the latter denominator has derivative rU' 1_ (k - I)' 1J). Con­

sequently. if 0 < r:O:; 1 then 1'1 consists of the two line segments [P I' p"J
and [P".Q*]. Thus tj;(u)=w[l+uh '(n-I) ,+IJ when O:o:;u:o:;
(n - 1)' h' while tj;(u) = nil' when (n -- I)' h':o:; u:O:; c'. This yields assertion
(ii). On the other hand. if r? 1 then 1'1 is composed of the line segments
[Pk,PktIJ (k=I ..... n-l) together with the horizontal line segment
[P". Q*]. This easily yields assertion (iii). The last assertions of the
theorem easily follow from the geometry of conv 1'0' The faet that this
sharp bound (2.4.3) is usually not attained derives from the fact that
[P b Pk + 1J belongs to the closure of conv 1'0 but not to conv l'o itself. I

COROLLARY 2.5. If r? 1 Ihen

(2.5.1 )

NOle. Clearly, when r = 2 inequality (2.4.3) leads to a sharper
inequality than the corresponding ShishaMond-type inequality (1.2.1). By
a similar reasoning, one obtains the following result.

PROPOSITION 2.6. Let [a, hJ he a closed finite inlerval containing 0 and
put c = max( lal. h) and L = h - a. LeI $: [ - L, +LJ --t IR + he an even non-
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negative function, 1/>(0) = 0, which is suhadditive on [0, L] (e.g., I/> could he
nondecreasing and concave). Consider

.F = { f: [a, h] -+ IR and I f( s ) - f(t )I ~ 1/>(s - t) flir s, t E [a, hJ }.

s~~ II f dvl = I I/> dv,

for each prohahility measure v on [a, h1
Suppose v is further restricted hy the moment condition

I 'P(t)v(dt)=p

where 'P is a given continuous even and non-negative function on [ - c, +c],
which is strictly increasing on [0, c], 'P(O) = O. Let

E=S:~ IIfdvl.

(i) Ijl/>('P- 1
) is convex on [0, 'P(c)] then E=pl/>(c)/'P(c).

(ii) Ijl/>( 'P I) is concave on [0, 'P( c)] then E = 1/>( 'P 1(p)).

Remark 2.7. If I/>(t) = k IW (0 < a ~ 1, k > 0), 'P(t) = It!' (r> 0) then
(i), (ii) happen when r~a and r"?a, respectively.

Remark 2.8. We maintain the notations of Proposition 2.6. Let J1 be a
measure on [a, h] with mass m and moment

I 'P(t) J1(dt) = mp.

Then each f E.'#' satisfies

IIfdJ1- f(o)1 ~ If(O)llm-11 + mE.

This inequality is sharp and in fact is attained by f( t) = f(O) + sl/>( t) and a
suitably chosen measure supported by at most two points (s = ±1 equals
the sign of (m - I) f(O)).

The following is well known.

LEMMA 2.9. Be given a closed finite interval [a, h] and fixed XoE [a, hl
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Consider fEC([a,b]), n? I, and denote tP(x)=fl"I(X)_p"l(xo). Then
(a~x~b)

. "f(kl(X
O

) k" (x - t)" I

f(x)= I (x-xo) + J tP(t)· 'dt,
k 0 k! 'II (n-I)'

As a related result we give

(2.9.1 )

THEOREM 2.10. Let f1 be a measure of mass m > 0 on [a, b] and
X o E [a, b] fixed. Let n be a fixed positive integer and put

I' 11
/(" j J)

h=LJ It-xol 'HI f1(dt)J . (2.10.1 )

Suppose f E C( [a, b]) satisfies

IP"I(s) -P")(t)1 ~ w if a ~ s, t ~ b, and Is - tl ~ h, (2.10.2)

where w is a given positive number. Then

wh"
+- (m];I,,+II+ I/(n+ I)).

n!
(2.10.3)

Proof: Without loss of generality let xo=O. From (2.10.2)
tP(x) = flnl(x) - fl"I(O) satisfies ItP(s) - tP(t)1 ~ w when Is - tl ~ h, therefore
ItP(t)1 ~ wI Itl / hl by Corollary 2.2. It follows from (2.9.1) and (2.3.1 ) that

I

. "f1kl(0)1
f(x) - I -k-'- xkl ~ wtPn(X)'

k 0 .

From rt/h l ~ 1 + t/h and (2.3.1 ),

w Ixl" ( IXI.)wq?n(x)';:;--,- 1+ I)h'n. (n+
(2.10.4)

Integrating relative to f1 and using Holder's inequality we obtain
(2.10.3). I

PROPOSITION 2.11. Let f E C( [ - n, n]), n? I, and f1 a measure on
[ -n, n] of mass m > O. Put

(
' (. Itl)"'I)I!""I!

[3 = J SIn - f1(dt)
2 I

(2.11.1 )
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and denote hy w= WI(/ill), fJ) the modulus of continuity offllli at /3. Then

1[l1fJn

+w[m l11l1
1

1 +1[/(n+ I)J -,-.
fl,

(2.11.2)

Proof: Analogous to the proof of Theorem 2.10. using the fact Itl ~
IT sin( Itl /2), I

III. ATTAINABLE INEQUALITIES

The following optimal results are obtained by using standard moment
methods (see [15, 16 J).

THEOREM 2.12, Let J1 he a finite measure on [a, hJ c IR. 0 E (C/, h) and
lal ~ h. Put

Ck = f tk J1(dt), k =0.1, .. ., n; dll=(J It!" li(dt)f"· (2.12.1)

Let IE C"( [a, hJ) he such that

Ifllll(s) -IIIII(t)1 ~ w if a~s, t~h, and 1.1'- tl ~h (2.12.2)

where w, h are given positive numhers.
Then we have the upper hound

The ahove inequality is in a certain sense attained hy the measure J1 with
masses [co- (dn/h)"J and (dn/h)" at 0 and h, respectively, and when.
moreover, the optimal function is

.l= WcPlI'

=0,

on [0, hJ;

on [a, 0].
(2.12.4 )

Namely, the latter is the limit of a sequence of functions f having con­
tinuou,\' nth derivatives satisf)'ing (2.12.2) and I ik)(O) = 0 (k = 0...., n) and
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such that the difference of the two sides of (2.12.3) tends to 0. In fact,
limN~ +t: fnN(t)=l(t), where (a~t~h)

(2.12.5 )

Here, for k = 0, 1,... , rhjhl- I and N;: I .I~N is the continuous function
defined

= (k + I) w,

=jh/hlw,

it a ~ t < 0;

I '))

if kh ~ t ~ ( k +~ h;

(2.12.6)

if (k+~)h<t~(k+I)h;

if (jh/hl-l+~)h<t~h.

Observe that j~JN( t) fulfills (2.12.2) and further

limfclN(t) = j t/h l lV,
lV-+:x

=0,

tE[O,h];

tE [a, 0].

Proof From (2.9.1), integrating relative to J1 get

where

Sn=w f rPn(t)J1(dt).

We would like to maximize Sn given that J1 has preassigned moments Co

and dn= [J IW J1(dt)],/n. Since the functions on hand Itl n and cPn(t) are
both even we are essentially concerned with a measure on [0, bJ (using
that lal ~ b). As usual, consider the curve defined by u = tn and v = rPn(t),
that is, v=cPn(u l

/
n) where u;:O. Here
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The function (ul/" -jh)'~ has its first derivative equal to (I - jhjul/")"+-l
which is obviously increasing in u. It follows that ¢,,(u 1/

") is convex. Con­
sequently, the integral J¢,,(t) Il(dt) is maximized by a measure taking
values at 0 and h only. Let 11 have masses p and q at 0 and b, respectively.
Thus p~O, q~O while p+q=co. Further, O+qb"=d~, thus q=(d"jb)".
Consequently, max S" = w¢,,(h) q = w¢,,(h )(d"jh )". I

Let L be a positive linear operator from C([a, b]) into C([a, h]). It
follows from the Riesz representation theorem, for every x E [a, b] there is
a finite non-negative measure Ilx such that

LeC") = J/U) Ilx(dt), for all / E C( [a, h]).

Naturally, the converse is not true. That is, only special kernels IlA·) will
transform continuous functions into continuous functions.

COROLLARY 2.13. Consider the positive linear operator

L: C( [a, h]) -> C( [a, h]), n E I\J.

LeI

cdx)=L((I-X)k,X), k=O,I, ...,n;

d,,(x) = [L( It - xl", x)] II";

c(x) = max(x - a, h - x) (c(x) ~ (h - a)j2).

(2.13.1 )

Let / E C( [a, h]) such that WI U("J, h)':;'; w, where w, h are fixed positive
numhers, 0 < h < h - a. Then we have the upper hound

" If1kJ(x)1
IL(f~ x) - /(x)1 ,:;.; 1/(x)1 Ico(x) - II + L k! Ick(x)1 + R". (2.13.2)

k ~ J

Here

(2.13.3)

where

e,,(hju) = n!¢,,(u)ju".

The ahove inequality is sharp. Analogous to Theorem 2.12, it is in a certain
sense altained by w¢,,( (t - x) + ) and a measure Ilx supported by {x, b} when
x - a ,:;.; h - x, also attained hy w¢ ,,( (x - t) + ) and a measure Ilx supported by



260 GEORGE A. A:'-IASTASSIOU

[x,a! when x~a?h-x: in each case WiTh masses co(x)~(d,,(x)/c(x))"

and (d,,(x)/c(x))", respectively.

Prool Apply Theorem 2.12 with 0 shifted to x. I
The next lemma will be used in Theorem 2.15.

LEMMA 2.14. Be given [a,hJcH: and xoE(a,h) fixed, consider all
measures Ii IviTh prescrihed momenTs

Jl( [a, hJ) = Co > 0: J(T - X o) p(dT) = cdxo), f It - xol Il(dl) = dt(xo)> O.

(2.14.1 )

For H',h>O (O<h<h-a) as given numhers, puT M(xo)=SUp!,J(H/Coi
~I(IT- xol) Jl(dT).

Then

The opTimal measure is carried hy (a, x o, hi'
Prool Easy. I
The assertion of Theorem 2.12 can be improved if more is known about

p. One result in this direction is the following.

THEOREM 2.15. Let [a, h] c 1R1, Xo E (a, h), and consider all measures p
on [a, h] such That

p([a,h])=co>O; J(T-Xo)p(dT)=cdxo)' J IT-xol p(dl)=dl(xo»O.

(2.15.1 )

FurTher, considerfEC1([a,h]) wiTh H'I(f',h)"S;w where w, h are given
posiTive numhers (0 < h < h - a).

Then, we geT The hesT upper hound

(2.15.2)

\vhere M(xo) is given hy (2.14.2).

Proof: Easy. I
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IV. NEARLY ATTAINABLE INEQUALITIES
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Here we establish some good inequalities with explicit constants better
than those in the literature. They involve the first modulus of continuity, or
its (smaller) modification, of the nth derivative of IE C([a, b]), n~ 1,
evaluated at h=rd

f1
+

J
(xo), where dll+,(xo)=(j It- x ol>1+1 /l(dt))H>1+II,

XoE [a, hl
The following is a refinement of a result due to B. Mond and R.

Vasudevan [231

THEOREM 2.16. Consider a closed interval [a, b] c IR, a given point
Xo E [a, h], and a measure fl on [a, h] ol mass m > 0 satislying

J(t - xo) fl(dt) = 0;

Then fi)r fE e l
( [a, h]) and r > 0,

If fdfl- f(x o)1 ~ If(xo)1 1m - 11 + ( '-II; + ~) w] U', rd2(xo)) d2(xo)·

(2.16.1)

Proof: By the mean value theorem, there is ~ E (I, x o) such that

IU) - f(x o) = (t - x o) f'(x o)+ (t - xo)(('(O - ('(xo)). (2.16.2)

Then

If'( 0 -f'(xo)1 ~ wIL/', I~ - xo/) ~ wl(f', It - xol 1= O)IU', It - xol 6- '6)

~(I+lt-xolb I)W 1(f',b) (forallb>O).

Therefore 1f'(~)-r(xo)1~(l + It-xol b I)w\(f',b), for all 6>0. Mul­
tiplying by It - xol, integrating relative to fl, and appling (2.16.2) we have

1.1' fdfl- ml(xol ! ~ 1f'(xo)1 I f (t - xo) fl(dt l\

+ (J It - xol fl(dt) + (J (t - x(Y !l(dtl) 6 ]) w\(f', b)

~1f'(xo)llf (t-xolfl(dt)!

+ [U U- XO)2 fl(dt))'2 ,,1m + 6 1 JU- X O)2 fl(dt)1
.UJ1U', 6).
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Letting (j = rd2(x O ), one obtains (2.16.1). I
The following is a refinement of the main theorem of a paper due to H.

H. Gonska [12].
Gonska's result is the latest improvement in this type of inequality. Here

flU) =Sf dfl·

THEOREM 2.17. Let fl he a measure on [a, h] oj' mass m > O. Consider
O<h<h-a and XoE [a, h] and let fE CI([a, h]).

Then

where

I
, ,II I+ - j f~(xo + u) du Ifl(t - xoJI,

2h II
(2.17.1 )

f~(t)=f'(a),

=f'(t),

=f'(h),

t<a;

tE [a, h];

t> h.

Remark. Observe that 1(I/2h)f'lIf~(xo+u)dul:S:llf'll,where 11'11
denotes the sup-norm over [a, h].

Proof If g E C 2
( [a, h]), then clearly

If I I
, I Ilg"ll I' )gdfl-mg(xo) :S:lg'(xo)1 J (t-Xo)fl(dt) +-2-. (t--xo)·Jl(dt).

(2.17.2)

Further,

IflU) -f(xo)ml :s: Ifl( f- g) - m(j- g)(xo)1 + Ifl(g) - g(xo)mi·

Hence,

IflU) -f(xo)ml :s: II U - gJ'lj fl( It - xol J

+ Ig'(xo)llfl(l-xo)1 + 11;'11 fl((I-x o)2). (2.17.3)

Let f ~ be the so-calledjirst Steklojffunction of f'; that is,

1 "II

U;,)(t)=2h I f~(t+u)du,
• II

(a ~ t ~ h).



POSITIVE LINEAR OPERATORS

By a well-known theory [29J,

263

and

It is easy to find g E C2
( [a, hJ) such that g' = U')h' Applying (2.17.3), one

obtains

IIlU) - f(xo)ml ~ wtU', h) {Il( It - xol) + 2
1
h Il((t - XO)2)}

+12
1
h rhf~(Xo+u)dullll(t-Xo)l. I

COROLLARY 2.18. Let the closed interval [a, bJ c IR and XoE; [a, bl
AIso consider a measure 11 on [a, hJ of mass m > 0, such that

J(t-xo)ll(dt)=O;

Let r > 0 and f E C' ( [a, hJ). Then

1.1 fdll- f(xo)1 ~ If(xo)1 1m - 11 + (~ + ;r) wtU', rd2(xo)) d:z(xo)·

(2.18.1)

Ohserve that (2.18.1) is sharper that (2.16.1).

Prool By Schwarz's inequality 1l(lt-xol)~(Il((t-xo)2))1/2J;.Now
apply (2.17.1) with h=rd2(xo)· I

Using (2.3.5), we obtain the following result.

THEOREM 2.19. Let f E C' ([a, bJ) and 11 he a measure on [a, b]l of mass
m > 0 with given moments

J(t-xo)ll(dt)=O;

where Xo E [a, h1 Consider r> O. Then

If fdll- f(xo)\ ~ 1f(xo)1 1m - 11 +L(2 + .j;r)2 WtU', rd2(xo)) d2(xo)·

(2.19.1 )
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Norl.'. If X o = 0 we could get a sharper inequality by using the modified
modulus of continuity (u] instead of w], where

(ud!', h) = sup{ If'(x) -1'(.1')1: x' \' ~ 0, Ix - \'1 ~ h}. (2.19.2)

COROLLARY 2.20. In rhl.' spccial casl.' 0/ m = I, X O = 0 1t'1.' have

!'. 'I ' (2 + 1')2IJ 1 ilp -/(0) ~ (udl .ril2 ) 81' il2

(whcrl.' d2 =il2(0)).

Proof 0/ Thl.'orem 2.19. Integrating (2.9.1 ) relative to p we get

(2.20.1 )

Jfilp - mf(xo)=f'(xo) J(t - x o ) p(ilr) +f K] (t, x o) p(iI!), (2.19.3)

where

Kdr,xo)= 1" rjI(x)dx;
",X()

rjI(x) =f'(x) - F(xo )'

Note that rP(xo) = 0 and IrjI(x)1 ~ wd 1', hJllx - xol / h l for all h> O.
Hence.

for all r. X o E [a, h]. By (2.3.5), we obtain

(2.19.4)

Now integrating (2.19.4) against p. using Schwarz's inequality, and setting
h = rd2(x O )' we find

Finally. from (2.19.5) and (2.19.3)
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the theorem follows. I

Remark 2.21. When wl(f', h) = Ah" 0 < 'Y.:( 1 and A> 0 constant, the
value of r> 0 minimizing the right-hand side of (2.19.1) is given by

(2.21.1 )

If 'Y. = 1 then letting r 10 one obtains that

(2.21.2 )

where

A = sup{ 1f'(s) -f'(t)11 Is - tl}·
\::/::-1

When 101 = band X o = 0, the last inequality is attained by f(x) = Xl and
a measure f.1 with masses ml2 at ±b (both sides are then equal mb 2

).

Remark 2.22. When m = I, 101 = b, X o = 0, r = 2, and'Y. is small, the
inequality (2.19.1) is nearly attained by f(x) = Ixl l Hand f.1 with mass :\. at
±b.

Remark 2.23. With m = I, 101 = b, X o = 0, the measure f.1 having mass :\.
at ± b, and f(x) = Ixl l

H (0 < 'Y.:( I), the left-hand side of (2.19.1) equals
a 1+" while the right-hand side equals (l+'Y.)(r' 1)/8)(2+r)la IH

.

Minimizing over r the right-hand side becomes C('Y.) (/1 H, where C('Y.) =
2'( I -'Y.) 1 + y (1 + 'Y.) Y. The quantity In C('Y.) is a concave function of'Y.
taking its largest value at 'Y. = 0.580332 and there C( 'Y.) = 1.650485. Further

C(O.OI) = 1.016923

C(0.05) = 1.084313

C(O.I ) = 1.167200

C(0.2) = 1.324023

C(0.3) = 1.46069

C(OA) = 1.56700

C(0.5) = 1.63299

C(0.6) = 1.649385

C(0.7) = 1.607942

C(0.8) = 1.501667

C(0.9) = 1.318405

C(0.95) = 1.189863

C(0.99) = 1.052338

C(0.999) = 1.0074349.
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So we see that (2.19.1 ) is never far off, in that it is attained up to a factor
1.65 at most.

Note. (i) If O<r:S:;4/ylm, then inequality (2.19.1) is sharper than
inequality (2.18.1). (ii) If r~4/~, then (2.18.1) is sharper than (2.19.1).
Because of (2.211) case (i) is probably more interesting.

In terms of best constants, in this type of inequality, the next result
improves all the related results we are aware of,

COROLLARY 2.24. Let Xo E [a, hJ and the measure J.1 on [a, hJ oj" mass
m > °satisf.i' the moment conditions

and

Consider r> °and fE CI([a, hJ). Then

I r- 7

:s:; 8r (2 + .Jmr )- wdf', rd2(xo)) d2(x o),

:s:;Jmw 1(f', rd2(xo)) d2(x o ), it r> 2/~. (2.24.1 )

When X o = 0, we get a sharper estimate hy replacing WI hy IV 1 (see
(2.19.2)).

Proof Note that the first part of (2.24.1) follows from (2.19.1). If
r~2/~ then apply (2.19.1) with r replaced by r l =2/j"; and note that
(1/8rJl(2 + j;r,)2 = j;. I

Taking r = ! in (2.19.1) one obtains:

THEOREM 2.25. Let the random variahle Y have distrihution fl,

E(y)=xo, andVar(Y)=o-2. Consider fE Ck(IR). Then

The last inequalitv is stronger than the corresponding pointwise results
f()llowing B. M and and R. Vasudevan [23] and 1. P. King [17].
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2.26. Application

Consider Xi real i.i.d. random variables and put S" = I'; ~ I XI' n ;:: I. Let
xo=E(X), o-2=Var(X) thus E(S,,/n)=xo and Var(S,,/n)=o-2jn. Denote
F,,, the dJ of S". Then (2.25.1) yields

IE/(S,,/n) -f(xo)1

= IJ~ f(l/n) dF,,,(I) - f(xo)1 ~ (1.5625) WI (1', 2 fi) fi·
(2.26.1 )

The following Corollaries 2.27, 2.28, 2.29, and 2.30 are applications of
(2.26.1) to well-known positive linear operators arising from probability
theory. The corollaries about the Baskakov, Szasz-Mirakjan, and
Weierstrass operators are improvements of the corresponding results from
Z. Ditzian [8J and S. P. Singh [28].

We start with the classical Bernstein polynomials.

COROLLARY 2.27. For any fECI([O,IJ) consider (B"f)(I) =

I% of(k/n)(;:)tk (l-t)" \ tE[O, I]. Then

. . (.,I~)~
I(B,,/ )(t) -/(1)1 ~ (1.5625) WI /'"2 ~----;;--n- ~----;;--n-

(
0.78125) ( 1)

~ fi WI 1"4fi'

Proo( Consider (Xi) i, ~\~ Bernoulli (i.i.d) random variables such
that Pr (X,=O) =1-t, Pr (X

I
=I) =t, tE(O,I), then E(X)==t and

Var(X)=t(l-t). Now apply (2.26.1) with xo=l. Further, note that
maxos r 'S,(t(l-t))=* at t=~. I

For t ~ 0 and fE CR(IR: +) the Szasz-Mirakjan operator is defined as

(M,J)(t)=e "I i f(~) (:r
k ~o n .

while the Baskakov-type operator is defined as
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Both operators are of the form E( 5,,/n) above. Namely, X there has the dis­
tribution

and

(Poisson and geometric), respectively. In both cases, E( X) = t while
Var(X) = t and Var(X) = (t + t2

), respectively.
Thus (2.26.1) implies:

COROLLARY 2.28. With the ahove notations, we have

(" 1 (t)12)(t)12I(M,J)(t)-f(t)I:((1.5625)w I \1"2;; ;;

and

.. I ·t+t2)1.2)(t+t2\12
i(V,.n(t)~f(t)I:((1.5625)WI(f"-(-- ...--1 '.. . 2 n n /

for all f E Ck( IR + ).

The Weierstrass operator is defined hy

A'J

(W,J )( t ) = - I
n '

f(x) I' "1 I lI'dx.

It agrees with El(S"ln) when X has the normal distrihution (t,~) with densitv
(1 / /), II II'IV n ( .

COROLLARY 2.29. For all fE Ck(lR) we have

I 1) I
W,,(f)-fll :((1.5625)w I (I'. J / /'

~ V 2n v 2n

where II' II is the sup-norm.
As our last illustration, let X have an exponential density I' lion IR! so

that E(X) = t. VariX) = t 2 Then S" has a xamma density with parameters n
and t I, so that S"ln has a gamma density with parameters n and nit.

This leads to the operator (see [11, p. 219])

nil .-> J

(H !)(t)= I ((x) x" Ie ,,\Idx. t>O.
". (n - I)! t".() .
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COROLLARY 2.30. For f E Ck(1R + ), t > 0 we find

I(H,J)(t)-f(t)1 ~(1.5625)wI(r, 7)~'
2 v n vn

269

In the following we establish similar inequalities for higher derivatives
(n ?= 1).

THEOREM 2.31. Let f1 he a positive measure oj' mass m > 0 on the
closed interval [a, hJ c IR, for which we asume that
(( 11m) JIt - xol"+ 1 f1(dt))llll+ II = dll + 1> 0, where XoE [a, h] isfixed. Con­
sider fEC"([a,hJ), n?= 1, with WIU'

III
), rdll+Il~w, where r, ware given

positive numhers. Then

(2.31.1 )

Note. (i) When xo=OE[a,h] then (2.31.1) IS also true when WI IS

replaced by (V I .

(ii) In applications r is usually small.

(iii) Inequality (2.31.1) on [- h, hJ for m = 1, r 10, and X o = 0 IS

attained by f(x) = Ixl"+ I and f1 with mass ~ at ±h.

Proof Exactly as the proof of Theorem 2.10 except that we use the
bound (2.3.6) for ¢II and take h = rdll f I instead. I
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