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Let [a,b]< R and let {L;},.N be a sequence of positive linear operators from
C'[a,b] (neZ*) to C[a, b]. The convergence of L, to the identity operator / is
closely related to the weak convergence of a sequence of finite measure y, to the
unit (Dirac) measure 8,,, x,€ [, b]. New estimates are given for the remainder
[ftap f dr; = f(x0)l, where fe C"([a, b]). Using moment methods, Shisha-Mond-
type best or nearly best upper bounds are established for various choices of [a, 5],
n and given moments of y,. Some of them lead to attainable inequalities. The
optimal functions/measures are typically spline functions and finitely supported
measures. The corresponding inequalities involve the first modulus of continuity of
S (the nth derivative of f) or a modification of it. Several applications of these
results are given. i 1985 Academic Press, Inc.

PART [. INTRODUCTION
We start with the following definition:

DEerINITION 1.1, Let Q be a connected compact Hausdorff space and
C(Q, R) the collection of all continuous f: @ - R. Let ge C(Q, R) be fixed
and define the g-pseudomodulus of continuity of fe C(Q, R) as

wol S ) =sup{[ f(x) = f(»)]: |g(x) — gy} <hj, (1.1.1)

where £ 20.
Thus w, (g, #) < h. The quantity w,( f, ) enjoys most of the basic proper-
ties of the usual modulus of continuity w,( f, &) (positively homogeneous as

* This paper is part of the author’s Ph.D. thesis, written under the direction of Professor J.
H. B. Kemperman at the University of Rochester, Rochester, New York, U.S.A.
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248 GEORGE A. ANASTASSIOU
a function of /., non-decrcasing, non-negative, and subadditive in /).
However, w,( f, ) is an upper-semicontinuous function and in general not

a continuous one.

ExampLE. Let

glx)=0, <yl
=x-1, 1<xg2
=1, 2<x<3

and f(x)=x then

w (fh)=1+h, 0h<l;

=3, h= 1.

Obviously, w,( /. ) is discontinuous.

Consider a sequence of positive linear operators L,: C(Q, R) - C(Q, R),
such that the sequence of functions {L,(1)},. is uniformly bounded. In
particular, | /| < ¢ implies |L,( /)| < L,(g). The following result is an easy
generalization of a result due to Shisha and Mond [26], who took
O=[a,b]=R and g(x)=x

THEOREM 1.2. One has

IL(f Y= fE<IAI LD =1 4w (fopE+ L D]), (1.2.1)

where

P, =L, ((g= gD
Further, |- || stands for the supremum norm. If L (1}=1, then (1.2.1} sim-
plifies to

IL(f) =S <2/ pa)

As an application, one has the following well-known theorem due 1o Korovkin

[18].

CorOLLARY 1.3. Let Q=[a.b]=R and ler {L,:C([a, b])—
C(La, b))}V ,cn be a sequence of positive linear operators. Suppose that
geC([a, b]) is 111 and further that L,(1)-"1, LJg)—-"g and
L,(g?) =" g Then L{f) "/ for all feC([a,b]).
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Proof. Note that

Pa<ILyg) =g’ +2 18l IL.(g)— gl +1ligh® 1L, (1)—1].
Now apply Theorem 1.2. |}

Z. Ditzian [8] gave extensions of (1.2.1) to the non-compact case under
suitable growth conditions for f.

Also R. A. DeVore [7] gave analogues of (1.2.1) for fe C'([a, b]).
Furthermore, E. Censor [6] extended (1.2.1) to the multidimensional case
and established related results for f'e C*([a, b]). Next B. Mond [22] gave
a more flexible inequality which sometimes leads to better constants in the
upper bounds for | L,(f)— fIl. This result was carried over to
/e C'([a, b]), by B. Mond and R. Vasudevan [23].

The latest result in this direction which often gives better constants as
well as a higher degree of approximation for fe C'([a, b]) is due to H. H.
Gonska [12]. He used the first Stekloff function of 1.

J. P. King [[17] gave a probabilistic interpretation of Korovkin's main
theorem and certain pointwise inequalities analogous to (1.2.1) for
feC([a.b]yor feCY[a b]).

We have mentioned only the papers directly related to our research.
However, there is a large related literature, for instance, the significant
theoretical work in Korovkin theory by J. A. Saskin [24], G. G. Lorentz
[217]. D. Amir and Z. Ziegler [1], H. Bauer [4], and most recently K.
Donner [9].

Our method is to reduce questions about positive linear operators to
questions about finite (positive) measures. Namely, let L: C[a, b] >
Cla, b] be a positive linear operator. Then for any xe [a, b] there is a
finite measure . such that

L(f.x)=| f(typddr),  forall feCla, b].

And many questions can be reduced to moment problems involving the
measure u.. Using standard moment methods, see [15, 16], we derive
pointwise estimates for |L( /., x)— f(x)| which sometimes imply uniform
ones. The advantage of this approach is that frequently one even obtains
attainable (ie., sharp) or nearly attainable inequalities. The optimal
elements f, p. are often spline functions and finitely supported measures,
respectively. Thus, this paper mainly deals with the quantitative study of
the pointwise convergence of a sequence of positive linear operators to the
identity operator through the use of moment methods.
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PART 2. ONE-DIMENSIONAL QUANTITATIVE RESULTS FOR
FINITE APPROXIMATION MEASURES OF THE UNIT MEASURE

In the rest of this paper we study the degree of weak convergence of a
sequence of finite measures {y,}, ., on R to the unit measure . In fact
we estimate |fodu —flx): feC(Q),neZ ', x,eQ. Here Q is usually a
compact interval of R, sometimes R itself. This enables us in turn to
estimate |L(f, x)— f(x)}, where L is a positive linear operator
Q)= C(Q).

Using standard moment methods, we obtain best or nearly best upper
bounds, often attainable, for different O, n and given power moments of u.

Our inequalities involve the first modulus of continuity w,( /), k), or a
modified version of it, of the nth derivative /" for a fixed value of the
argument 4.

We present several favorable comparisons of our results to related
known results, for instance, the inequality due to O. Shisha and B. Mond
[26], as well as to the latest improvement due to H. H. Gonska [12].

I. PRELIMINARIES

The following general result leads to Corollary 2.2 which is used a lot
throughout this paper.

THEOREM 2.1. Let C be a subset of the real normed vector space
V=(V,||'|) which is star-shaped relative to the fixed point x,. Let further
{{h;, w;): i€} be a given collection of numbers (h;>0, w,>0, I arbitrary),
and consider the collection F of functions f-C— R such that f(x,)=0
while, for each i€ l,

s =t <h, = | f(5)— f(D)] <o, (2.1.1)

Then

®)
[

sup | () =pllis—x,l)  (s€C), (2.

e F

where

p(|u):lnf{z kllivl: HuH g Z kl’hl}

ie ! il
where k.eZ ', k=3, k,<x.

Proof. Obviously, p(llu) is an even subadditive function on R satisfy-
ing p(0)=0 and p(h,)<w, {iel). Moreover, p(|lull) is non-decreasing on
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R*. Hence f,(s)=p(]|ls—x,|) restricted to C defines a function f,e.7,
showing that (2.1.2) holds with the > sign. To prove the opposite
inequality, it suffices to show that | f(s)| <> ,., k,w; as soon as f€ # and
s —xoll €3, kb, (kjeZ™, k=3, k, <o) ThlS 1s easily done by an
induction on k. The cases k=0 and k=1 are obvious. Let k > 0 satisfy the
assertions and suppose s € C satisfies

- Xl <Y kit h, (k,EZ*,Zk,:k:rel>.

iel

Choosing s* on the line segment xys such that [ls"—s,l <>\ kA, and
s —s'|| <h,, one easily sees that | f(s)| <Xt kw,+w,. |

COROLLARY 2.2, Let C and x4 be as above and consider f. C — R with
the properties

flxy)=0 (2.2.1)
and

s —th<h=]f(s)—f()<w:  w, h>0.
Then there is a maximal such function ¢, namely,
P(t) =TIt = xoli /i Tw, (2.2.2)

where | -] indicates the ceiling of the number.
2.3. An Auxiliary Function

Let 4> 0 be fixed. We shall often use the even function defined by

e =
¢”(.Y) = A |7Z‘| W dt (XE R) (23])

Equivalently,
IRy Y
pal)=] | <j { 1dr )---dxl. (2.3.2)
“0 Yo 0 h
Since [1/h]1=3/1,.,,. the latter yields that

1 x
¢n(x) :m < Z (|X| _/h)’: > (233)

=0
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In particular, letting k =T |x|/h7,

¥ k 1 l
$r(x)= 3 (x| —jh), = 3 (5[ —jh) =k x| =5 kth~ 1) A (234)
= () i

;-0 i

Maximizing over k =0, (attained if k =%+ |x|/h), it follows that

¢1{-\‘)<¢*1(~\'):7 (x| +4/2)" (2.3.5)

|

1
In fact, @,(x,)=¢, (x) =1 hk* and ¢|(x;)=¢, (x )=k at x,=(k—1)h
(k=1,2,3,..). Further, one easily gets

et .| # a1y
x| lx[" A lx] ) (23.6)

¢"(’”<¢*”m’<(n+1)!/1 o 8=y,
with equality only at x=0. Note from (2.3.3) that ¢, 1s a (polynomial)
spline function. In each interval ((j— 1)A. jh] equals a polynomial of
degree n. At the points ji (j=0, 1...) the derivatives D*¢, (k=0, 1....
n— 1) are continuous while the nth derivative makes an upward jump of
size 1. Moreover, ¢,(x) is convex on R and strictly increasing on R’
{(n>=1). Finally.

RN

px)=| ¢, (di  (xeR'.nz1) (2.3.7)

~0

provided we define ¢,(¢t)=[1/h].

I1. BEsT UPPER BOUNDS AND RELATED RESULTS
Using moment theory methods we obtain the following results.

THEOREM 2.4. Let p be a finite measure of mass m on the interval [a, b}
where 0e [a, b]. Let ¢ =max(la|, b). Suppose further that

1oy

([ Nk ,4((11)) —d (24.1)

where r>0 and d >0 are given. In order that u exists, we also assume that
d"<me’. Next, consider f: [a, b] - R satisfving

[f(s)— flr) €w when s, tela, b];ls—1 <h (24.2)
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Here, >0 and w>0 are fixed. Then the best possible constant
K=K(m,r.d, how, f(0)) in the inequality

o
=
0

lj 1 dy ~f(0)‘ <Im— 1] f(0) + mK (

is given as follows (and is independent of f(0)). Here n=[c/h,
k=Tdhm"". Since d"<mc" one has 1 <k <n.

(i) K=my when k=n, that is, when di/m"'" > ¢ —h.
(i) K=[1+/m)dhy (n—1)" "]w when r<1 and k <n.
(i) K=k+O0 ) )w< [ +d/(hm'")]w when r=1 and k <n. Here
O, =[d/m—(k-1YhN/[kh—(k—1)h]

The equality sign in (2.4.3) is usually not attained but can be approached
arbitrarily closely by the function f(t)= f(0)+ e[ t/h |w (with e= 41 of the
same sign as (m— 1) f(0)) and a measure u of mass m supported by a single
point in case (1), by at most two points O and t* in case (11) (with absolute
value slightly to the right of (n— 1) h), and by at most two points t, and t, in
case (iii) (with absolute value slightly to the right of (k— 1) h and kh, respec-
tively).

Proof. Let g(t)= f(t)— f(0). From Corollary 2.2, we have

g <p(ey=T1t1/hTw.
Thus

[ rae=r10) [ s om=1) f0) < [ g i tm =111 01

Here, the equality sign obtains when f is of the form f,(7)= f(0)+ &p(¢)
with ¢ = +1 of the same sign as (m — 1) f(0). One easily verifies that f; also
satisfies (2.4.2). Thus, the best constant K in (2.4.3) is given by

mK = sup ' ¢ du
oot

where p ranges over the measures on [, b] of mass m which satisfy (2.4.1).
Introducing the probability measure dv=m "' du, we have

K=sup | ¢(1) v(dn)
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where v ranges through the probability measures on [«, b ] satisfying
I‘ [t]" v{dty=d"/m.

Note that both ¢(7) and [17]" are even functions on [«, b]. It follows (see
[15,16]) that K=y(d"/m), where I', = [ (u, y(u)): 0 <u <"} describes the
upper boundary of the convex hull conv /', of the curve

o= ¢(0)): 01 <0y (where ¢ =max(|«|, b).

Note that I, consists of the following parts:

(1) The origin (0, 0) corresponding to ¢ =0.
(it} For k=1,.,n—1, the half open horizontal linc segments
(Py. Q] where P, =((k— 1) I.kw)and Q,= (K"l kw).
(iii) The half open non-empty horizontal line segment (P,, Q,].
where Q, = (¢’ nw). It is always a part of the upper boundary 7| of
conv [, yielding assertion (1) of the theorem.

The line segment from P, to P,,, has a slope wh "/ [Ak"—(k—1)]
which is decreasing in & when r=1 and increasing in kK when 0<r <1
(since the latter denominator has derivative r[&” '—(k—1} ']). Con-
sequently, if 0 <r<1 then /", consists of the two linc scgments [P, P, ]
and [(P,,Q,] Thus y)=wll+uh "(n—1) "'} when 0<u<
(n—="1)"h" while y(u)=nw when (n— 1) h"<u<¢" This yields assertion
(11). On the other hand, if ¥ > 1 then ' 1s composed of the line segments
[P, Piiy] (k=1,..n—1) together with the horizontal line segment
[P,.Q,] This easily yields assertion (ni). The last assertions of the
theorem easily follow from the geometry of conv /7,. The fact that this
sharp bound (2.4.3) is usually not attained derives from the fact that
[P, P., ] belongs to the closurc of conv /', but not to conv I, itself. |}

COROLLARY 2.5, [fr=1 then

{
“fdu—f(O)’ < lm—1] ] f(0) +w (m +;— m' ”) (2.5.1)
J _ 1
Note. Clearly, when r=2 inequality (2.4.3) leads to a sharper
inequality than the corresponding Shisha-Mond-type inequality (1.2.1). By
a similar reasoning, one obtains the following result.

PROPOSITION 2.6. Let [a, b] be a closed finite interval containing 0 and
put c=max(|al,byand L=b—a. Let ¢: [~ L, +L] > R™* he an even non-
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negative function, @(0) =0, which is subadditive on [0, L] (e.g., @ could be
nondecreasing and concave). Consider

F={flabl>Rand |f(s)— ) <P(s—1) for s,te[a b]}.

Let Fo={feF:f(0)=0}. Clearly ®e F, and | f| < @ for all € F, thus

sup dev =J" ® dv,

)

for each probability measure v on [a, b].
Suppose v is further restricted by the moment condition

~

j P(t) v(dr)=

where ¥ is a given continuous even and non-negative function on [ —c, +c],
which is strictly increasing on [0, ¢], W(0)=0. Let

E= sup ‘ﬁfdv .

F o Y

(1) If ®(¥ ") is convex on [0, ¥(c)] then E = p®(c)/¥(c).
(i) If &(W ") is concave on [0, ¥(c)] then E=®(¥ '(p)).

Remark 2.7. If &)=k |t|* (O<a<1,k>0), ¥(t)=]t]” (r>0) then
{1), (1) happen when r <« and r > a, respectively.

Remark 2.8. We maintain the notations of Proposition 2.6. Let u be a
measure on [a, b] with mass m and moment

[ (1) pldr) =

v

Then each fe.# satisfies
U.f'du—f(O)‘ <IS(O)] |~ 1] +mE.

This inequality is sharp and in fact is attained by f(¢) = f(0) + e®(¢) and a
suitably chosen measure supported by at most two points (¢ = +1 equals
the sign of (m — 1) f(0)).

The following is well known.

LEMMA 2.9. Be given a closed finite interval [a, b] and fixed xy,€ [a, b].



256 GEORGE A. ANASTASSIOU

Consider e C'([a,b]), n=1, and denote $(x)= f'"(x)— f'"(x,). Then
(a<x<h)
d f(k)(x()) B (x—o) !

Py (.Y—.Y())A+J ¢(t)‘m'd’. (291)

As a related result we give

THEOREM 2.10. Let u be a measure of mass m>0 on [a, b] and
Xo€ [a, b] fixed Let n be a fixed positive integer and put

~ I/i(n+ 1)
h=[J Irxol”*‘u(dt)] : (2.10.1)

Suppose fe C"([a, b]) satisfies
[Fs)— ")) <w if a<s. t<h and|s—1t<h (2.10.2)

where w is a given positive number. Then

" n 1/\ n !
’f.fduf(xo < atim ¢ 3 Lol {t (1 o )
Whn legn + 1) / ‘

Proof Without loss  of generality let x,=0. From (2.10.2)
d(x)= f"(x)— f£"(0) satisfies |¢(s) — ¢(1)] <w when |s— 1| <h, therefore
[p(2)] < wl it /ﬂ by Corollary 2.2. It follows from (2.9.1) and (2.3.1) that

" (/\P ‘
‘f(X) Z Y" <wg,(x).
k -
From [ t/h )< | +t/h and (2.3.1),
Ll ]
we,(x) < o <l+(n+l)h>' (2.10.4)

Integrating relative to p and using Holder's inequality we obtain
(2.10.3). 1

ProrosiTiON 2.11. Let feC"([—n.m]), n=1, and p a measure on
[—m, wn] of mass m=>0. Put

- ot 1 Lo + 1)
/;=<J <sm %) u(dt)) (2.11.1)
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and denote by w=aw(f'"", B} the modulus of continuity of f'" at . Then

R (A)O
d.f'du—.f‘(O)‘éyf(O)l Im—1] + Z Lo Urh(dr)

+wDﬂ”””+nﬂn+lﬂz%L. (2.11.2)
n.

Proof.  Analogous to the proof of Theorem 2.10, using the fact j7| <
msin(|r]/2). 1
ITT1. ATTAINABLE INEQUALITIES

The following optimal results are obtained by using standard moment
methods (see [15, 16]).

THEOREM 2.12.  Ler p be a finite measure on [a,b] <R, O€(a, b) and
lal <b. Put

~ - 1in
o= Auldn. k=0, L m:(JM"MmO . (212.0)

Let feC"([a, b]) be such that
| /"8y — ") < w if a<s,t<b, and |s—1)<h (2.12.2)

where w, h are given positive numbers.
Then we have the upper bound

(A)

a n d I
U _fdu—fw)] O] feo— 11+ Z Pl e, 4w b )(7}>.<2.12.3)

The above inequality is in a certain sense attained by the measure ji with
masses [co—(d,/bY'] and (d,/b)" at O and b, respectively, and when,
moreover, the optimal function is

A?(: M)¢n7 on [0* b]*

(2.12.4)
=0, on [a,0].

Namely, the latter is the limit of a sequence of functions f having con-
tinuous nth derivatives satisfving (2.12.2) and f*(0y=0 (k=0,...n) and

640 45 1.5
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such that the difference of the two sides of (2.12.3) tends to 0. In fact,
limy_, o, foult)=J(2), where (a<1<b)

Sor=w [ (117 fonteyan, )Y ar. @2125)
0 o} “0

Here, for k=0,1...[b/h—1 and N=21 f,\ is the continuous function
defined
Jon(t)=0, if a<1<0;
Nwi N / 2
=— Hl—= f kh<i<lk+=)h;
7 +kw< 2>, if kh<t ( +N>
5 (2.12.6)
={k+1)w, if <k+ﬁ>h<1<(k+l)h;
. 2
=[h/hw, if (Fb/lﬂvl +/—V>h<z<b.

Observe that fon(t) fulfills (2.12.2) and further
im  fo)=[t/hTw,  1€[0,b];
N +x
=0, rela, 0]

Proof. From (2.9.1), integrating relative to p get

" " (k) 0
“/dn—f(())' <1 /O ey 11+ 3 LN

k=1

’Ck’ + Sn

where
S,=w | gult) uidn)

We would like to maximize S, given that p has preassigned moments ¢,
and d,=[[[7]" u(dr)]"". Since the functions on hand |7|" and ¢,(r) are
both even we are essentially concerned with a measure on [0, b] (using
that |a| <b). As usual, consider the curve defined by u=+¢" and v =¢,(¢),
that is, v=¢,(u"") where u > 0. Here

U VA
bl ") =— ( Y= jhy )

=0
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The function (u'" — jh)" has its first derivative equal to (1 — jhju'imyn =1
which is obviously increasing in . It follows that ¢,(u'") is convex. Con-
sequently, the integral | @,(r) u(dr) is maximized by a measure taking
values at 0 and b only. Let p have masses p and ¢ at 0 and b, respectively.
Thus p=0, ¢ >0 while p+ g =c,. Further, 0+ ¢b"=d", thus g=(d,/b)".
Consequently, max S, = w¢,(b) g =we, (b)(d,/b)". |

Let L be a positive linear operator from C"([a, 1) into C([a, b]). It
follows from the Riesz representation theorem, for every x e [a, b] there is
a finite non-negative measure p, such that

LUfx)=] flpdn).  forall feC([a b))

Naturally, the converse is not true. That is, only special kernels u () will
transform continuous functions into continuous functions.

COROLLARY 2.13.  Consider the positive linear operator
L: C"([a, b])— C([a, b]), neN.
Let

d,(x)=[L{lt—x|", x)]""; (2.13.1)
c(xy=max(x—a, b—x) (c{x)=(h—a)/2).

Let feC[a, b]) such that w,( /", hy<w, where w, h are fixed positive
numbers, 0 < h < b —a. Then we have the upper bound

n lflk)( )|
LS x) = [ <o) leox) =1+ ) T le(x) +R,.  (2.132)
ko=
Here
d,(x)\" w
Rn=14¢n(€(«'<))< > =— 0,(h/c(x)) dy(x), (2.13.3)
c(x) n!
where

0, (hju) =nl¢,(u)u"

The above inequality is sharp. Analogous to Theorem 2.12, it is in a certain
sense attained by we,((t — x), ) and a measure u supported by {x, b} when
x—a<bh—x, also attained by we,((x —t},) and a measure y, supported by
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{xcal when x—azb—x:in cach case with masses ¢,(x)— (d, (x)/c(x))
and (d,(x)e(x)), respectively.

Proof.  Apply Theorem 2.12 with 0 shifted to x. ]

The next lemma will be used in Theorem 2.15.

LEMMA 2.14. Be given [a,b] <R and xy€{a.b) fixed, consider uall
measures u with prescribed moments

wlla, b}y =¢,>0: ' (1 —x,) uldt) = ¢ (x4 . 1= Xol hdt)y=d (x,) > 0.
(2.14.1}

For w, h>0 (0<h<b—a) as given numbers, put M(x,)=sup, J (W/cy)

#1(|1— xq|) uldr).
Then

di(xo) + ¢y(xg) (Cil(-\'())"('J(x())>
M(x,)=wi (b — x| ———— | + we,(x(,— —_—
M(xo)=we,( \0)< 2ealh = x0) /) we(xy—a) et —a)
(2.14.2)
The optimal measure is carried by {a, x,, h}.
Proof. FEasy. |

The assertion of Theorem 2.12 can be improved if more is known about
u. One result in this direction is the following.

THEOREM 2.15. Let [a, b1 R, x,€(a, b), and consider all measures u
on [a, b] such that

u(la, b])=co>0; ‘ (1 —xo) uldt) = ¢ (x0). J |t = xol uldr)=d(x,) > 0.
(2.15.1)
Further, consider feC'([a, b]) with w,( [, h)<w where w, h are given

positive numbers (0 <h<b—a).
Then, we get the best upper bound

IJA./‘-dﬂ_./'(Xu) < fxoll leg =+ 117 ()] He(xo)] + co M{xy), (2.15.2)

where M(x,) is given by (2.14.2).
Proof. Easy. |
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IV. NEARLY ATTAINABLE INEQUALITIES

Here we establish some good inequalities with explicit constants better
than those in the literature. They involve the first modulus of continuity, or
its (smaller) modification, of the nth derivative of fe C"([a, b)), nz=1,
evaluated at h=rd,, (x,). where d,, (xo)=(]|7—x,j""" pldr)" ",
xp€fa bl

The following is a refinement of a result due to B. Mond and R.
Vasudevan [23].

THEOREM 2.16. Consider a closed interval [a, b1 c R, a given point
X € [a, b, and a measure p on {a, b] of mass m>0 satisfying

~ ~ 12
J {t —Xy) uldt)y=0; <J (r— \0) (df)> =d,(x4)>0.
Then for feC'([a, b]) and r >0,

\jﬂmﬁfum

{
[ flxy)] Im—1] +( /’n+ ) W f, rdy(xo)) dyo(xg).
(2.16.1)

Proof. By the mean value theorem, there is £ € (¢, x,) such that
F) = f(xg) = (r—x¢) f(xo) + (1 = xS (E) = f(x0)). (2.16.2)
Then

LSO = xp)l So(f1E—x0) < o f/,lf——\'of):w](‘/u»'tﬂxo‘(5715)
S(T+1t—x410 Do (f',9) (for all 6 > 0).

Therefore | //(E)— f(x )| (1 + [t~ x| 6 Y f', ), for all §>0. Mul-
tiplying by |z — x,], integrating relative to p, and appling (2.16.2) we have

< IS )l | [ (= o) )

+<fUMXduMH+<fU—xwﬂmﬂ06‘)wdem

< (xo)l U (1 —xy) puldt)

ﬁﬁﬂm~mﬂm>

+ [(f (1—x0)° (dl))l 2 \/’;—ﬁ—(;) : f(f‘xo)z ll(d’)]

.U)I(f‘/’ ())
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Letting = rd,(x,), one obtains (2.16.1). |

The following is a refinement of the main theorem of a paper due to H.
H. Gonska [12].
Gonska’s result is the latest improvement in this type of inequality. Here

w(f)=]1dp.

THEOREM 2.17.  Let u be a measure on [a, b] of mass m>0. Consider
O<h<b—aand xyela,b] and let feC'([a,b]).

Then
. ) _ ) ) 1 7
U‘f"“‘/"‘ﬂ) SIf o) lm =1+, (f .m{u(!r—xow,—h (1 — x0)?)
1 rh y
+‘5EJ h_f*(.\”o‘f-u)du it — x4)], (2.17.1)
where

1t)=/1"(a), 1 <ua;
= ['(1), rela, bl:
= ["(h), 1> b

Remark. Observe that [(l/2h)j*’ wf w(xo+u)dul <[ £, where |||
denotes the sup-norm over [qa, b].

Proof. 1f ge C*([a, b]), then clearly

+Hi2““ ‘ (1 Xq)° udt).

U g du—mg(x,)| < [g'(x)l U (1 —xy) pldt)

(2.17.2)
Further,

)= fxg)ml < lul( f—g)—m( [~ glxo)| +1u(g) — glxy)mi.
Hence,

(u( f) = flxe)m| <O/ = g)'ll ulle—xo1)

+ g (xp)] [l — xp)] +M #((['“-\'0)2

]
. ) (2.17.3)

Let /', be the so-called first Stekloff function of /'; that is,

(Fid=ar | fili+wde,  (@<i<b)



POSITIVE LINEAR OPERATORS 263

By a well-known theory [29],
=l <o(f k) and ()l <h oS h).
It is easy to find g e C*([a, b]) such that g'=( f"),. Applying (2.17.3), one
obtains
: 1
I f) = f(xogyml<w,(f', h) {u(lt—xolHﬂ u((t—xo)z)}

N \i [ Firo+w) d
y

T lu(t—xo)l. 1

COROLLARY 2.18. Let the closed interval [a,b]<R and x,€[a, b}
Also consider a measure y on [a, b] of mass m >0, such that

N 12
[/ (0 =x0) atdr) =0 Qu—nyme — dy(xg) > 0.

Let r>0 and feC'([a, b]). Then

1
< f(xo)l Im— 1] + <\/r_n+5> w,(f7, rdy(xo)) da(Xo)-
(2.18.1)

Mf@—ﬂ%)

Observe that (2.18.1) is sharper that (2.16.1).

Proof. By Schwarz’s inequality u(|f — xo|) < (u((t — x)* )" \/; Now
apply (2.17.1) with h=rd,(x,). §

Using (2.3.5), we obtain the following result.

THEOREM 2.19. Let fe C'([a, b]) and p be a measure on [a, b] of mass
m >0 with given moments

- 12
| (1= xo) ptr) =0; (ju—mfmmo = dy(x0) > 0,

where x,€ [a, b]. Consider r> 0. Then

t
<1l Im =1+ 2= (24 /mr)? (S, rda(xo)) d(xo)
(2.19.1)

Uf@*ﬂm)
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Note. If x,=10 we could get a sharper inequality by using the modified
modulus of continuity @, instead of ¢, where

Gy =supl| Sy =i v =20 v — yi <A (2.19.2)

Obviously, @, <w,.

COROLLARY 2.20. [n the special case of m=1, x,=0 we have

2 D
ERA (2.20.1)
8r

H /‘!,U*. (0 )‘<“)1(f Lrdy)

(where ds=d,(0)).

Proof of Theorem 2.19. Integrating (2.9.1) relative to u we get
‘/'dﬂ*mf(-r() =/"(xy) ' [ —Xy) pldr) + ' K\ (2, xy) uldr), (2.19.3)

where
Kitxg) =] gloydv oo =15 11x)

Note that ¢(x,)=0 and |¢(x)| <o (f' h) |x—x,/h] for all 4> 0.
Hence,

(Kt xp)l <M (1 xg) = o) h)J ’7\—‘17& dx,

for all «, x,e[a, b]. By (2.3.5), we obtain

(1—xp) 1=
20 2

(K (L x b <M (1, xy) <o, (f, /1)[ all +§J (2.19.4)

Now integrating (2.19.4) against u, using Schwarz’s inequality, and setting
h=rd,(x,), we find

' K, (1, x4) !udt)< (2+ mr):w,(_f", rd-(xy)) d+(x,). (2.19.5)

Finally, from (2.19.5) and (2.19.3)

. 1 ~ y
) ‘ fdu—mf(x,)| < i (24 /mr)” o ([, rdy(xy)) dalx).
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Since

lthﬂn»

éUMMHm—H+Uf@Afumﬂ

the theorem follows. |

Remark 221. When w,(f", h)=Ah*, 0<a <1 and 4 >0 constant, the
value of r >0 minimizing the right-hand side of (2.19.1) is given by

=2(1 —a)/(/m(1 +2)). (221.1)

If =1 then letting r | 0 one obtains that

T . . 1
’J Jdp— flxg)| <1 f(x)| im—1] +§ Ad3(x,), (2.21.2)

where

A=sup{|f(s)— /"Dl |s—1]}.
When |a| = b and x, =0, the last inequality is attained by f(x)=x" and
a measure y with masses m/2 at +5b (both sides are then equal mb?).

Remark 222. When m=1, |a|=b, xq=0, r=2, and 2 is small, the
inequality {2.19.1) is nearly attained by f(x)=|x|'** and u with mass | at
+ 5.

Remark 2.23. With m=1, la| =b, x,=0, the measure y having mass 4
at +h, and f(x)=|x|'** (0<x< 1), the left-hand side of (2.19.1) equals
a'**, while the right-hand side equals (1+a)(r* "/8)2+r)>a' "™
Minimizing over r the right-hand side becomes C(a)a'*? where C(x)=
251 —a) “'"** (1 +2)"* The quantity In C(«) is a concave function of «
taking its largest value at o« =10.580332 and there C(o}=1.650485. Further

C(0.01)=1.016923 C(0.6) = 1.649385
C(0.05)=1.084313 C(0.7)=1.607942
C(0.1)=1.167200 C(0.8) =1.501667
C(0.2) =1.324023 C(0.9)=1.318405
C(0.3)=1.46069 C(0.95) =1.189863
C(0.4)=1.56700 C(0.99) = 1.052338
C(0.5)=1.63299 C(0.999) = 1.0074349.
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So we see that (2.19.1) is never far off. in that it is attained up to a factor
1.65 at most.

Note. (1) 1If 0<r<d/y, /m, then inequality (2.19.1) is sharper than
inequality (2.18.1). (ii) If r >4/ \/_ then (2.18.1) is sharper than (2.19.1).
Because of (2.21.1) case (i) is probably more interesting.

In terms of best constants, in this type of inequality, the next result
improves all the related results we are aware of.

COROLLARY 2.24. Let xy€[a, b] and the measure u on [a, b] of mass
m >0 satisfy the moment conditions

’

o - 1.2
| 1=x)udy=0  and %Hm=(JUmfuMH>-

Consider r >0 and fe C'([a, b]). Then

| e

] fd# Fxo) —lf(xo)l [ — 11

8— 2+\/mr ([, rdy(xy)) dyl(xy), if r<2/\/';:

< ma(f, rdy(x0)) do(Xy), i or>2iym (2241)

When x,=0, we get a sharper estimate by replacing o, by o, (see
(2.19.2)).

Proof.  Note that the first part of (2.24.1) follows from (2.19.1). If
r>2/\/n_'z then apply (2.19.1) with r replaced by », = 2/\/; and note that

(u&nu+¢%mﬁzvﬁ.l
Taking r =1 in (2.19.1) one obtains:

THEOREM 2.25. Let the random variable Y have distribution u,
E(Y)=x, and Var(Y)=a". Consider {'€¢ CY(R). Then

o1 .
LEf(Y) = flxo)l = ’J fdp— f(w (1.5625) w, (.f ZEG) g. (2251)

The last inequality is stronger than the corresponding pointwise results
following B. Mond and R. Vasudevan [23] and J. P. King [17].
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2.26. Application

Consider X real i.i.d. random variables and put S, =37 | X, n>1. Let
x,= E(X), o= Var(X) thus E(S,/n)=x, and Vdr(S',,/n)—o /n. Denote
Fg the d.f of S,. Then (2.25.1) yields

LEF(S,/n) = flx,)]

= l /) dF (1) — f(x,)| <

-

1.5625
5010 /- &)V
(2.26.1)

The following Corollaries 2.27, 2.28, 2.29, and 2.30 are applications of
(2.26.1) to well-known positive linear operators arising from probability
theory. The corollaries about the Baskakov, Szasz-Mirakjan, and
Weierstrass operators are improvements of the corresponding results from
Z. Ditzian [8] and S. P. Singh [28].

We start with the classical Bernstein polynomials.

CoroLrLarY 227. For any  feCY[0,1]) consider (B,f)}1)=
Su oSk (1 =1 % 1e[0,1]. Then

‘ L= -
(B, £ )(1)— f(1)] < (15625)(1),(/«’5\/1( n t)>\/z(ln 0

<<0.78125) (/A, I )
f—)w , )
NL S 4\/;1-

Proof. Consider (X,); , Bernoulli (i.i.d) random variables such
that Pr (X,=0) =1—1, Pr (X,=1) =t te(0,1), then E(X)=1 and
Var(X) =11 —~t). Now apply (2.26.1) with x,=1¢ Further, note that
Inax()i!sl(’(l _t)):% at [:%' I

For 120 and fe Cyx(R™) the Szasz—Mirakjan operator is defined as
nt)*
(M, f))y=e ™ Z /<n>( )

while the Baskakov-type operator is defined as

‘ s kN n+k—1 tt
(V,,.f)(l)=kz().f<;>< P >(—1+—t)7ﬁ
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Both operators are of the form E(S,/n) above. Namely, X there has the dis-
tribution
N A

L ! | f .
Py=¢ "' Z F()A and Py= Z (l—ﬂj(l—ﬁ) O

ko0 k=0

(Poisson and geometric), respectively. In both cases, E(X})=t while
Var(X)=1 and Var(X)=(/ + %), respectively.
Thus (2.26.1) implies:

COROLLARY 2.28. With the above notations, we have

, 1 1:2 1:2
’(M”f)(l)*f“)’ < (1.5625) w, (f/* §<£> ><£>

and

00 10 < (15625 0, (1 l(w [> >(’+ l)

Jor all fe CLR™).
The Weierstrass operator is defined by

(89

(W, f)0)= ﬁ | Sye T
n/ s

It agrees with Ef(S, /n) when X has the normal distribution (1, 5) with density
(l//m)e '™

CoOROLLARY 2.29. For all fe CL(R) we have

]

’ 1 !
W) — fII<(1.5625) w, (f >

S A
/ /
2/2n/ /2n

where ||| is the sup-norm.

As our last illustration, let X have an exponential density ¢ ' on R so
that E(X)=1, Var(X)=1t> Then S, has a gamma density with parameters n
and t ', 50 that S,/n has a gamma density with parameters n and n/1.

This leads to the operator (see [11, p. 2197])

"/1

',n I, navit 1" f>0
—_(nAl)!t”m flx)x ¢ dx

(H, /)1 =
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COROLLARY 230. For fe CL{R"Y), 1>0 we find

\(H, f)(1) = f(D] <(1.5625) w, </ ~I—=> L
/A

/ /’r’_ .
ALARVEL

In the following we establish similar inequalities for higher derivatives
(n=1).

THEOREM 2.31. Let u be a positive measure of mass m>0 on the
closed interval [a, ] =R, for which we asume that
(Um0 =xo|" " pu(de)! """ =d, >0, where x,€ [a, b] is fixed. Con-
sider e C'([a,b]), nz1, with o, ([, rd, .Y <w, where r, w are given
positive numbers. Then

. ) ; ) " l ‘(/\’P(X :
. fdu—f(xg)| <im—1]| flx)l + Z /—/\'L)' [ (’_xo),\ uldr)
: k=1 : :
mw [ 1
—_ | — (2.31.
+rn![8+2+(n+l)}d”“ (2.31.1)

Note. (i) When x,=0¢€[a, b] then (2.31.1) 1s also true when w, is
replaced by @,.
(11) In applications r is usually small.
(ii1) Inequality (2.31.1) on [—b,b] for m=1, r|0, and x,=0 is
attained by f(x)=|x|"*" and u with mass { at +.

Proof. Exactly as the proof of Theorem 2.10 except that we use the
bound (2.3.6) for ¢, and take h=rd, ., instead. |

ACKNOWLEDGMENT

This author wishes to express great thanks to Professor J. H. B. Kemperman for his
inspiration and guidance throughout the course of this work.

REFERENCES

1. D. AMIR AND 7. ZIEGLER, Korovkin shadows and Korovkin systems in C(S)-spaces, J.
Math. Anal. Appl. 62 (1978), 640-675.

2. G. A. AnasTassiou, “A Study of Positive Linear Operators by the Method of Moments,”
Ph.D. thesis, University of Rochester, Rochester, N.Y., 1984.

3. T. M. AposToL, “Mathematical Analysis,” Addison—-Wesley, London, 1969.

4. H. BAUER. Approximation and abstract boundaries, Ann. Math. Monthly 85 (1978),
632-647.



270 GFORGE A. ANASTASSIOU

~J

. P. L. Butzer anD L. HAHN, General theorems on rates of convergence in distribution of
random variables. I. General limit theorems, J. Multivariate Anal. 8 (1978), 181 201.

. E. Censor, Quantitative results for positive linear approximation operators, J. Approx.
Theory 4 (1971), 442-450.

. R.A. DeVore, “The Approximation of Continuous Function by Positive Linear
Operators,” Lecture Notes in Mathematics. Vol. 293, Springer-Verlag. Berlin/New York.
1972,

. Z. Ditziax. Convergence of sequences of linear positive operators: Remarks and

applications, J. Approx. Theorv 14 (1975), 296- 301.

. K. DoNNER, "Extension of Positive Operators and Korovkin Theorems.” Lecture Notes in

Mathematics, Vol. 904, Springer-Verlag. Berlin/New York. 1982.

. N. DUNFoRD aND J. . ScHWARTZ, “Linear Operators, Part I, “Interscience, New York,

1957.

. W. FELLER. "An Introduction 10 Probability Theory and Its Applications, Vol. 11" Wiley,
New York, 1966.

. H. H. Gonska, On approximation of continuously differentiable functions by positive
linear operators, Bull. Austral. Math. Soc. 27 (1983), 73-81.

. L. HanN, Stochastic methods tn connection with approximation theorems for positive

linear operators. Pacific J. Math. 101 (2)(1982), 307-319.
. S Karnin anp W, L Stenpen, “Tchebycheff Systems: With Applications in Analysis and
Statistics,” Interscience, New York, 1966.

. J. H. B. KEMPERMAN, The general moment problem, a geometric approach, Ann. of Math.

Statist. 39 (1)(1968), 93--122.

. J. H. B. KEMPERMAN, On the role of duality in the theory of moments, in “Semi-Infinite

Progr. and Appl., an International Symposium at Austin, Texas, 1981." Lecture Notes in
Fconomics and Math. Systems No. 215, pp. 63-92. Springer-Verlag, Berlin/New York.
1983.

. 1P KinG. Probability and positive lincar operators, Rev. Roumaine Math. Pures Appl.

20. No. 3, (1975), 325-327.

. P. P. Korovkin. “Linear Operators and Approximation Theory,” Hindustan Publ. Corp..

Delhi, India. 1960.

. G. G. LoreNTZ, “Bernstein Polynomials,” Univ. of Toronto Press, Toronto, 1953.
. G. G. Lorextz, “Approximation of Functions,” Holt, Rinchart & Winston, New York,

1966.

. G. G. Lorextz, Korovkin sets, Lecture notes Sept. 1972, U. C. Riversipg, Center for

Numerical Analysis. the University of Texas at Austin, 1972.

. B. Monn, On the degree of approximation by lincar positive operators. J. Approx. Theory

18 (1976). 304 306.

. B. Moxp AND R, Vasupevan, On approximation by linear positive operators, J. Approx.
Theory 30 (1980), 334 336.

. J. A. 8askin, Korovkin systems in spaces of continuous functions, 4mer. Math. Soc.
Transl. Anal. Ser. 2 54 (1966), 125 -144.

5. L. L. ScHuMAKER, “Spline Functions. Basic Theory,” Wiley, New York, 1981

. O. SHisHA a~xD B. Monp, The degree of convergence of sequences of linear positive
operators, Nur. Acad. Sci. U.S.A. 60 (1968), 1196-1200.

. O. SHISHA AND B. Monn, The degree of approximation to periodic functions by linear
positive operators, J. Approx. Theory 1 (1968}, 335-339.

. S. P. SINGH, On the degree of approximation by Szasz operators, Bull. Austral. Math. Soc.
24 (1981), 221-225.

29. A. TiMaN. “The Theory of Approximation of Functions of a Real Variable™ (translation

from Russian). Pergamon, Oxford/New York. 1963



